Using Wavelets to Obtain a Consistent Ordinary Least Squares Estimator of the Long Memory Parameter

نویسنده

  • Mark J. Jensen
چکیده

We develop an ordinary least squares estimator of the long memory parameter from a fractionally integrated process that is an alternative to the Geweke Porter-Hudak estimator. Using the wavelet transform from a fractionally integrated process, we establish a log-linear relationship between the wavelet coe cients' variance and the scaling parameter equal to the long memory parameter. This log-linear relationship yields a consistent ordinary least squares estimator of the long memory parameter when the wavelet coe cients' population variance is replaced by their sample variance. We derive the small sample bias and variance of the ordinary least squares estimator and test it against the Geweke Porter-Hudak estimator and the McCoy Walden maximum likelihood wavelet estimator by conducting a number of Monte Carlo experiments. Based upon the criterion of choosing the estimator which minimizes the mean squared error, the wavelet OLS approach was superior to the Geweke Porter-Hudak estimator, but inferior to the McCoy Walden wavelet estimator for the processes simulated. However, given the simplicity of programming and running the wavelet OLS estimator and its statistical inference of the long memory parameter we feel the general practitioner will be attracted to wavelet OLS estimator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet estimation of a local long memory parameter

There are a number of estimators of a long-memory process' long-memory parameter when the parameter is assumed to hold constant over the entire data set, but currently no estimator exists for a time-varying long-memory parameter. In this paper we construct an estimator of the time-varying long-memory parameter that is based on the time-scale properties of the wavelet transform. Because wavelets...

متن کامل

Wavelets and Estimation of Long Memory in Log Volatility and Time Series Perturbed by Noise

Percival and Walden (2002) present a wavelet methodology of the least squaresestimation of the long memory parameter for fractionally differenced processes. Wesuggest that the general idea of using wavelets for estimating long memory could beused for the estimation of long memory in time series perturbed by noise. One prominentexample thereof is the time series of log-Garman-Kla...

متن کامل

Time-Varying Long-Memory in Volatility: Detection and Estimation with Wavelets

Previous analysis of high frequency nancial time series data has found volatility to follow a long-memory process and to display an intradaily U-shape pattern. These ndings implicitly assume that a stable environment exists in the nancial world. To better capture the nonstationary behavior associated with market collapses, political upheavals and news annoucements, we propose a nonstationary cl...

متن کامل

Consistent least squares fitting of ellipsoids

A parameter estimation problem for ellipsoid fitting in the presence of measurement errors is considered. The ordinary least squares estimator is inconsistent, and due to the nonlinearity of the model, the orthogonal regression estimator is inconsistent as well, i.e., these estimators do not converge to the true value of the parameters, as the sample size tends to infinity.A consistent estimato...

متن کامل

The analysis of residuals variation and outliers to obtain robust response surface

In this paper, the main idea is to compute the robust regression model, derived by experimentation, in order to achieve a model with minimum effects of outliers and fixed variation among different experimental runs. Both outliers and nonequality of residual variation can affect the response surface parameter estimation. The common way to estimate the regression model coefficients is the ordinar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997